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Abstract

The Camassa–Holm equation is rich in geometric structures, it is completely integrable, bi-Hamiltonian, and it repre-
sents geodesics for a certain metric in the group of diffeomorphism. Here two new multi-symplectic formulations for the
Camassa–Holm equation are presented, and the associated local conservation laws are shown to correspond to certain
well-known Hamiltonian functionals. The multi-symplectic discretisation of each formulation is exemplified by means
of the Euler box scheme. Numerical experiments show that the schemes have good conservative properties, and one of
them is designed to handle the conservative continuation of peakon–antipeakon collisions.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this paper is to study multi-symplectic algorithms for the numerical integration of the Camassa–
Holm equation [6,7]
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ut � uxxt þ 3uux � 2uxuxx � uuxxx ¼ 0; ujt¼0 ¼ u0: ð1Þ
This partial differential equation has received considerable attention during the last decade. It is known to be
rich in geometric structures and it possesses smooth as well as non-smooth traveling wave solutions. Thus, it
seems natural to apply schemes which are known to retain at least some of these structures. We shall here be
concerned in particular with the property of multi-symplecticy and investigate to which extent a simple numer-
ical scheme with a similar property offers a worthwhile alternative to other known methods for this problem.
In particular we are interested in understanding how the choice of a multi-symplectic formulation can be used
as a guide for achieving the near-conservation of designated invariants.
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We begin by reviewing certain important properties of the Camassa–Holm equation. The equation models
propagation of unidirectional gravitational waves in a shallow water approximation, with u representing the
fluid velocity, see [6,28]. The Camassa–Holm equation also has applications in computational anatomy, see
[27,36]. Eq. (1) can be rewritten in an equivalent manner as the following system
ut þ uux þ P x ¼ 0; ð2aÞ

P � P xx ¼ u2 þ 1

2
u2

x : ð2bÞ
The Camassa–Holm equation can be derived from a least action principle and it corresponds to the geodesic
equation in the group of diffeomorphism with respect to a given right-invariant metric, see [15,16]. The equa-
tion has a bi-Hamiltonian structure [6,20,21] and is completely integrable [11]. It has infinitely many conserved
quantities, see [6,19]. In particular, for smooth solutions the quantities
Z

udx;
Z
ðu2 þ u2

xÞdx;
Z
ðu3 þ uu2

xÞdx ð3Þ
are all time independent (in this paper, we will not write the integration domain as the results hold for both
solutions with periodic or vanishing at infinity boundary conditions).

The Camassa–Holm equation also possesses solutions of a soliton type, which, because of their shape, have
been given the name of peakons. In the case of the real line, a single-peakon is given by
uðx; tÞ ¼ ce�jx�ctj;
thus, the traveling speed c is proportional to the height of the peak. In the periodic case with period a, the
periodized version of this single-peakon is
uðx; tÞ ¼ c
coshðdðx� ctÞ � a

2
Þ

coshða
2
Þ ;
where dðxÞ ¼ mink2Zjx� kaj.
When the initial data u0 is smooth enough, that is, u0 2 HsðRÞ for s > 3

2
, the Cauchy problem for the Camas-

sa–Holm equation is well-posed locally in time, see [14,33,38] for the non-periodic case. For initial data
u0 2 H 1ðRÞ which satisfies the condition that u0 � u0;xx is a positive Radon measure, the solutions exist globally
in time and are unique, see [17]. However, in the general case, solutions may blow-up and they do it in the
following manner. Let T be the time where a smooth solution eventually loses its regularity, i.e.,
limt!Tkuð�; tÞkHs ¼ 1 for all s > 1. Then,
lim
t!T

inf
x2R

uxðx; tÞ ¼ �1:
There appears a point where the profile of u steepens gradually and ultimately the slope becomes vertical. In
the context of water waves, this corresponds to the breaking of a wave [6,7,12,13]. After blow-up, the solution
is no longer unique and the Camassa–Holm equation is indeed not well-posed globally in time. A good illus-
tration of what may happen is given by the symmetric peakon–antipeakon case where two peakons which tra-
vel in opposite directions collide. Since the peakons have exactly opposite height, the solution at the time of
collision, which we denote t�, is identically zero, see Fig. 1.

After the time of collision, one can prolong the solution by letting the peakon and antipeakon ‘‘pass
through” each other in a way which is consistent with the Camassa–Holm equation and such that the energy
remains constant except at t�. These solutions are called conservative as they preserve the energy for almost
every time. It is clear that in order to obtain the conservative solutions out of the zero state which is reached
at the time of collision, we need extra information. This information is provided by the energy density
ðu2 þ u2

xÞdx. In the case of the antisymmetric peakon–antipeakon collision the energy density ðu2 þ u2
xÞdx

tends to a Dirac measure located at the point of collision and whose magnitude depends on the total energy
of the solution, see [25] for detailed computations. A semigroup of global conservative collisions has been
obtained in [2,24] via a change of coordinates. In [24], Lagrangian variables are used and the key point in
the argument comes from the fact that the energy density satisfies the following transport equation
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Fig. 1. Symmetric peakon–antipeakon collision.
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ðu2 þ u2
xÞt þ ðuðu2 þ u2

xÞÞx ¼ ðu3 � 2PuÞx; ð4Þ
where P is given by (2b). In this article we derive numerical methods which aim to resolve the conservative
solutions, and to achieve this, we shall make explicit use of the evolution of the energy density. After denoting
u2 þ u2

x by a, we can see that (2) and (4) are equivalent to
ut þ uux þ P x ¼ 0; ð5aÞ

P � P xx ¼
1

2
u2 þ 1

2
a; ð5bÞ

at þ ðuaÞx ¼ ðu3 � 2PuÞx: ð5cÞ
We now briefly review certain numerical schemes for the Camassa–Holm equation (1) found in the literature,
but without intending to be exhaustive. Schemes using a pseudospectral space discretisation of the Camassa–
Holm equation were derived in [7,30]. This last paper investigates numerically different aspects of periodic
traveling waves and tries to understand the rate of convergence of the algorithm. An approach based on
the multipeakons
uðx; tÞ ¼
Xn

i¼1

piðtÞe�jx�qiðtÞj;
where pi and qi are solutions of the Hamiltonian system with Hamiltonian function Hðp; qÞ ¼
1
2

Pn
i;j¼1pi pj e�jqi�qjj, is examined in [8,9,23,26]. Amongst other things, the conditions for global existence and

the convergence of the methods are studied in these articles. A convergence analysis of finite difference schemes
was given in [10,22]. We mention that the schemes proposed in [10] and in [26] can also handle peakon–anti-
peakon collisions. In [1], a finite volume method is developed to simulate the dynamics of peakons. This
scheme is adaptive, with high resolution and stable. Finally, a finite element method is derived in [40]. The
scheme proposed in this paper is high order accurate and nonlinearly stable. Several numerical examples
are also included in order to illustrate the behaviour and verify the properties of this method.

The rest of this paper is organised as follows: in Section 2 we review some of the general theory of multi-
symplectic PDEs and their numerical discretisations, following the approach of Bridges and Reich [4]. In Sec-
tion 3 we present two new multi-symplectic formulations of the Camassa–Holm equation, and discuss their
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momentum and energy conservation laws. We consider discretisations using the multi-symplectic Euler box
scheme and demonstrate their performance through numerical tests. Since the focus of our approach is mainly
geometric, we shall be particularly interested in the conservative properties when we present the numerical
experiments, and we make active use of the energy conservation in order to handle peakon–antipeakon col-
lisions. However, for comparison with earlier work published in the literature, we also present some numerical
results related to convergence on finite time.
2. Multi-symplectic PDEs and their multi-symplectic discretisation

2.1. Multi-symplectic partial differential equations

The schemes that we propose for the Camassa–Holm equation are based on multi-symplectic formulations
of the partial differential equations (1) or (5). For the sake of completeness, we will review this concept in a
general context, for more details, see e.g. [3,4,37].

A partial differential equation F ðu; ut; ux; utx; . . .Þ ¼ 0 is said to be multi-symplectic if it can be written as a
system of first order equations:
M zt þ K zx ¼ rzSðzÞ; ð6Þ
with z 2 Rd a vector of state variables, typically including the original variable u as one of its components. The
matrices M and K are skew-symmetric d � d-matrices, and S is a smooth scalar function depending on z. Eq.
(6) is not necessarily unique and the dimension d of the state vector may differ from one expression to another.
From the form of Eq. (6), we can see the multi-symplectic formulation of a partial differential equation as a
natural generalisation of the symplectic formulation of the Hamiltonian system
Jyt ¼ rHðyÞ;
where J ¼ 0 I
�I 0

� �
. A key observation for the multi-symplectic formulation (6) is that M and K define sym-

plectic structures on subspaces of Rd ,
x ¼ dz ^Mdz; j ¼ dz ^ Kdz:
Considering any pair of solutions to the variational equation associated with (6), we have, see [4], that the fol-
lowing multi-symplectic conservation law applies
otxþ oxj ¼ 0: ð7Þ
This is a local conservation law, and thus the multi-symplectic formulation of a partial differential equation
may lead to numerical schemes which render well the local properties of the equation.

With the two skew-symmetric matrices M and K, one can also define the density functions
EðzÞ ¼ SðzÞ � 1

2
zT

x KTz ; F ðzÞ ¼ 1

2
zT

t KTz;

GðzÞ ¼ SðzÞ � 1

2
zT

t MTz ; IðzÞ ¼ 1

2
zT

x MTz;
which immediately yield the local conservation laws
otEðzÞ þ oxF ðzÞ ¼ 0 and otIðzÞ þ oxGðzÞ ¼ 0; ð8Þ
for any solution to (6). Thus, under the usual assumption on vanishing boundary terms for the functions
F ðzÞ and GðzÞ one obtains the globally conserved quantities of (energy and momentum)
EðzÞ ¼
Z

EðzÞdx and IðzÞ ¼
Z

IðzÞdx: ð9Þ
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2.2. Multi-symplectic integrators

There are two standard ways to construct multi-symplectic integrators: one is to approximate the Lagrang-
ian by a sum and take variations (see for example [35]), the other (see for example [3] or [4]) is to write the
partial differential equation as a system of first order equations (6) and then to discretise it.

The main philosophy behind the use of symplectic integrators for Hamiltonian systems is that the schemes
are designed to preserve the symplectic form of the equation at each time step. For multi-symplectic partial
differential equations, the idea of Bridges and Reich [4] was to develop integrators which satisfy a discretised
version of the multi-symplectic conservation law (7). For this purpose, they considered a direct discretisation
of (6), replacing the derivatives with divided differences, and the continuous function zðx; tÞ by a discrete ver-
sion zn;i � zðxn; tiÞ on a uniform rectangular grid. We set Dx ¼ xnþ1 � xn; n 2 Z; and Dt ¼ tiþ1 � ti, i P 0.

Following their notation, we write
Mon;i
t zn;i þ Kon;i

x zn;i ¼ ðrzSðzn;iÞÞn;i; ð10Þ

where o

n;i
t ; o

n;i
x ; and ðrzSðzn;iÞÞn;i are discretisations of the partial derivatives ot; ox and of the scalar function S,

respectively. A natural way of inferring multi-symplecticity on the discrete level is to demand that for any pairs
ðU n;i; V n;iÞ of solutions to the corresponding variational equation of (10), one has
on;i
t xn;i þ on;i

x jn;i ¼ 0;
where
xn;iðUn;i; V n;iÞ ¼ hMU n;i; V n;ii; jn;iðU n;i; V n;iÞ ¼ hKU n;i; V n;ii:
Unfortunately, it is not generally true that the solutions of a multi-symplectic integrator fulfill the discrete ver-
sions of the local conservation laws for energy and momentum (8). However, as noted in [4] this holds when
SðzÞ is a quadratic function, but it is not the case for the multi-symplectic formulations of the Camassa–Holm
equation which are presented here. We proceed by giving two well-known examples of multi-symplectic inte-
grators, but first we introduce some notation for difference operators which will be used throughout the rest of
this paper. For any variable U ¼ ðUn;iÞ defined on a two-dimensional grid, we let
dþt U n;i ¼ U n;iþ1 � U n;i

Dt
and d�t Un;i ¼ Un;i � Un;i�1

Dt
;

and similarly for differences in space. Also, we shall need the centered differences dt ¼ 1
2
ðdþt þ

d�t Þ; and dx ¼ 1
2
ðdþx þ d�x Þ.

2.2.1. The concatenated midpoint rule

This scheme, introduced by Preissman in 1960 and one of the most widely used in hydraulics, was proved to
be multi-symplectic in [4]. The scheme also appears under the name of Preissman box scheme, or centered box
scheme. It reads
Mdþt
zn;i þ znþ1;i

2

� �
þ Kdþx

zn;i þ zn;iþ1

2

� �
¼ rzSðzcÞ;
where
zc ¼
1

4
ðzn;i þ znþ1;i þ zn;iþ1 þ znþ1;iþ1Þ:
2.2.2. The Euler box scheme
Following [37] one may obtain an integrator satisfying a discrete multi-symplectic conservation law by

introducing a splitting of the two matrices M and K, setting M ¼ Mþ þM�;K ¼ Kþ þ K� where MT
þ ¼

�M� and KT
þ ¼ �K�. The corresponding scheme reads
Mþd
þ
t zn;i þM�d

�
t zn;i þ Kþd

þ
x zn;i þ K�d

�
x zn;i ¼ rzSðzn;iÞ: ð11Þ
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Note that the scheme is only linearly implicit as opposed to the concatenated midpoint rule for which a system
of nonlinear equations must be solved in each time step. The multi-symplecticity is interpreted in the sense that
dþt xn;i þ dþx jn;i ¼ 0; ð12Þ
where xn;i ¼ dzn;i�1 ^Mþdzn;i and jn;i ¼ dzn�1;i ^ Kþdzn;i. An important observation is that the splitting of the
matrices is not unique, and we shall see later that the choice of splitting may strongly affect the behaviour of
the scheme. In general one can write, say Kþ ¼ 1

2
K þ S and K� ¼ 1

2
K � S where S is any symmetric matrix.

In the rest of the paper, we will consider only the Euler box scheme for the sake of simplicity, although in
principle, any other multi-symplectic schemes could have been used.

3. Multi-symplectic integrators for the Camassa–Holm equation

In this section, we propose two multi-symplectic formulations for the Camassa–Holm equation. The first
formulation is based on the partial differential equation (1) and has a state variable vector of dimension 5.
The second formulation has eight components in the vector of state variables and it is based on (5). With this
formulation the resulting multi-symplectic integrator is able to continue the conservative solution after a pea-
kon–antipeakon collision.

3.1. First multi-symplectic formulation

Eq. (1) may be rewritten in the form
ut � uxxt þ
3

2
u2 þ 1

2
u2

x

� �
x

� ðuuxÞxx ¼ 0: ð13Þ
Setting z ¼ ½u;/;w; v; m�T we may now derive a multi-symplectic formulation (6) with the two skew-symmetric
matrices
M ¼

0 1
2

0 0 � 1
2

� 1
2

0 0 0 0

0 0 0 0 0

0 0 0 0 0
1
2

0 0 0 0

26666664

37777775; K ¼

0 0 0 �1 0

0 0 1 0 0

0 �1 0 0 0

1 0 0 0 0

0 0 0 0 0

26666664

37777775:
The right-hand side of (6) is then given by the gradient of the scalar function
SðzÞ ¼ �wu� u3=2� um2=2þ mv:
For convenience, we also write this system componentwise
1

2
/t �

1

2
mt � vx ¼ �w� 3

2
u2 � 1

2
m2;

� 1

2
ut þ wx ¼ 0;

/x ¼ u;

� ux ¼ �m;

� 1

2
ut ¼ um� v:
To the best of our knowledge, this multi-symplectic formulation of the Camassa–Holm equation is new. How-
ever, in the Lagrangian setting a formulation with 6� 6 matrices M and K has been derived in [31] and a for-
mulation with non-constant matrices can be found in [18].

For this choice of the skew-symmetric matrices M and K, the density functions defined in the introduction
are explicitly given by
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EðzÞ ¼ SðzÞ þ 1

2
zT

x Kz ¼ 1

4
ð/tu� uxtuþ u3 þ uxut þ uu2

x � ut/Þ;

F ðzÞ ¼ � 1

2
zT

t Kz ¼ 1

2
ðutv� /twþ /wt � uvtÞ;

GðzÞ ¼ SðzÞ þ 1

2
zT

t Mz ¼ 1

2
/tu� uxtu� u2uxx þ u3 � 1

2
u2

x þ
1

2
uu2

x þ
1

2
uxut þ

1

4
ðut/� utm� /tuþ mtuÞ;

IðzÞ ¼ � 1

2
zT

x Mz ¼ 1

4
ð�ux/þ uxmþ u/x � umxÞ:
In deriving the corresponding global invariants (9), some care has to be taken with respect to boundary terms
because /ðx; tÞ is not periodic (or vanishing at �1) even if uðx; tÞ is. We integrate the second local conserva-
tion law otIðzÞ þ oxGðzÞ ¼ 0 over the spatial domain and obtain (using the definitions of the additional
variables)
1

4

d

dt

Z
ð�ux/þ u2

x þ u2 � uuxxÞdxþ ½GðzÞ� ¼ 0; ð14Þ
where the square brackets denote the difference of the function evaluated at the upper and lower limit of the
integral. The periodic (or vanishing at infinity) boundary conditions of u imply that ½u� ¼ ½ux� ¼
½uxx� ¼ � � � ¼ 0 and ½/t� ¼

R
/xt dx ¼

R
ut dx ¼

R
ðu2

2
þ P Þx dx ¼ 0. Hence, after two integrations by parts, it fol-

lows from (14) that
1

2

d

dt

Z
ðu2 þ u2

xÞdx� 1

4

d

dt
½u/� þ 1

4
½ut/� ¼ 0;
and thus the momentum
R
ðu2 þ u2

xÞdx is a global conserved quantity.
Similarly, for the energy, we obtain
�2
d

dt

Z
ðu3 þ u2

xuÞdxþ d

dt
1

4
ð/t � 2/xxt � /2

xx þ 3/2
x � 2/x/xxxÞ/

� �
þ 1

2
½/wt� ¼ 0:
By the usual assumption on boundary terms, the two expressions in square brackets cancel.
Finally, we remark that these two global conserved quantities are equivalent to the two Hamiltonians of the

bi-Hamiltonian formulation of the Camassa–Holm equation given for instance in [6,34]:
H1 ¼
1

2

Z
ðu2 þ u2

xÞdx; ð15Þ

H2 ¼
1

2

Z
ðu3 þ uu2

xÞdx: ð16Þ
Considering now waves traveling from left to right, we have chosen the following splitting of M and K
Mþ ¼

0 0 0 0 0

� 1
2

0 0 0 0

0 0 0 0 0

0 0 0 0 0
1
2

0 0 0 0

26666664

37777775; and Kþ ¼

0 0 0 �1 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

26666664

37777775:
With this particular choice, the Euler box scheme (11) reads
1

2
d�t /n;i � 1

2
d�t mn;i � dþx vn;i ¼ �wn;i � 3

2
ðun;iÞ2 � 1

2
ðmn;iÞ2;

� 1

2
dþt un;i þ dþx wn;i ¼ 0;

�d�x /n;i ¼ �un;i;
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d�x un;i ¼ mn;i;

1

2
dþt un;i ¼ �un;imn;i þ vn;i:
There is a potential difficulty in the computation of the starting values zn;0 and in the recurrence for /n;i. But
fortunately, like in [39] for the KdV equation, one can eliminate all the additional variables /;w; v; m and ex-
press the Euler box scheme only in terms of the variable u. This gives us the following multi-symplectic inte-
grator, which can be compared to the form (13) of the Camassa–Holm equation
1

2
ðdþt þ Sxd

�
t Þun;i � 1

2
dþx ðd

�
x d�t þ dþx dþt Þun;i þ dþx

3

2
ðun;iÞ2 þ 1

2
ðd�x un;iÞ2 � dþx ðun;id�x un;iÞ

� �
¼ 0; ð17Þ
where we have introduced the right shift operator Sxun;i ¼ unþ1;i.
In the case where the wave travels in the opposite direction, one must use a different splitting of the skew-

symmetric matrix K, for example
Kþ ¼

0 0 0 0 0

0 0 0 0 0

0 �1 0 0 0

1 0 0 0 0

0 0 0 0 0

26666664

37777775:
The resulting numerical scheme and its behaviour is very similar to the first case, and we therefore omit any
further discussion of it. In the case of waves traveling in both directions simultaneously, it is possible to make
a compromise between the two above choices, and set Kþ ¼ 1

2
K and Mþ ¼ 1

2
M . The resulting scheme is given

below, expressed only in terms of the variable u and using the centered divided differences dt; dx:
dtun;i � d2
xdtun;i þ dx

3

2
ðun;iÞ2 þ 1

2
ðdxun;iÞ2

� �
� d2

xðun;idxun;iÞ ¼ 0: ð18Þ
In Fig. 2, we plot the deviation of the invariants (3) from their initial values along the numerical solution ob-
tained by the Euler box scheme, using the schemes (17) and (18), respectively. We have used the following
smooth initial data (see [1])
u0ðxÞ ¼ uðx; 0Þ ¼ 0:2þ 0:1 cosð2xÞ; for x 2 ½�p; p�;

and grid parameters Dx ¼ 0:0042 and Dt ¼ 0:004 over the time interval [0, 5]. It is interesting to observe how
sensitive the conservation properties are to the choice of the splitting of the matrix K.
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2. Conservation properties of scheme (17) (left) and the scheme based on centered splitting (18) (right) for smooth initial data.
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The Camassa–Holm equation admits a whole family of traveling waves of the type
Table
Conve

Dx

2.5272
1.2636
6.3179
3.1590
2.1060
1.5795
1.2636
1.0783
8.0869
uðx; tÞ ¼ f ðx� ctÞ;

where f is a function of one variable and c is the velocity of the wave, see [32]. It can be checked that smooth
traveling waves have to fulfill the relation
d2f
dx2
¼ f � a

ðf � cÞ2
; ð19Þ
for some constant a. To obtain a periodic smooth traveling wave the constant a cannot be taken arbitrarily, as
pointed out by Kalisch [29]. By choosing c ¼ a ¼ 3 and solving (19) for f ð0Þ ¼ 1 and f 0ð0Þ ¼ 0, we obtain a
periodic smooth traveling wave with period a = 6.469546942524, see Fig. 3.

We consider the convergence of the scheme (18) for a smooth traveling wave with initial data as in Fig. 3.
The Courant number p ¼ cDt

Dx is fixed to the value p ¼ 0:9. We vary the space step x and set the time step to
Dt ¼ pDx=c. Table 1 displays the L1-error and an order estimate at time T ¼ 12 for various space step Dx.
For this smooth solution, order 2 can be observed.

In the following numerical experiment, we study the error for the peakon solution (see [40]) given by
u0ðxÞ ¼
c

coshða=2Þ coshðx� x0Þ if j x� x0 j6 a=2;

c
coshða=2Þ coshða� ðx� x0ÞÞ if j x� x0 j> a=2;

(
ð20Þ
where x0 ¼ �5; c ¼ 1 and the period a ¼ 30. Fig. 4 shows snapshots, for the time t ¼ 0; 3 and 5, of the exact
solution (solid line) and the numerical solution (dashed line) computed with a time step Dt ¼ 0:0002 and a
space step Dx ¼ 0:04 for method (18). Note that even for this relatively small space step, a small oscillatory
tail at one end of the peak appears in the numerical solution. This phenomenon was also observed in [30].

We next consider the rate of convergence for the problem (20) using again the scheme (18), the Courant
number p ¼ cDt

Dx is fixed to the value p ¼ 0:9. We vary the space step Dx and set the time step to Dt ¼ pDx=c.
One can see from Fig. 5 that the order of convergence is one for this non-smooth solution.
1
rgence rate for the smooth traveling wave (19)

L1-error Order estimate

e�02 2.5168e�03 –
e�02 6.2909e�04 2.0003
e�03 1.5724e�04 2.0003
e�03 3.9311e�05 1.9999
e�03 1.7473e�05 1.9998
e�03 9.8285e�06 2.0000
e�03 6.2903e�06 2.0000
e�03 4.5805e�06 1.9999
e�04 2.5767e�06 1.9998
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0.8

1

1.2
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1.6

1.8

2

2.2

Fig. 3. Smooth periodic traveling wave.
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Fig. 4. Snapshots of the peakon solution and the numerical solution given by (18).
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3.2. Second multi-symplectic formulation

As we said in the beginning of this section, the first formulation does not handle peakon–antipeakon col-
lisions. To remedy to this problem, as explained in the introduction, in addition we will consider the evolution
of the energy density and replace Eq. (2) by (5). However, we first have to prove that the two formulations are
indeed equivalent. When the solutions are smooth, Eq. (2) implies (5); the computation which is very similar to
the one that follows can also be found in [24]. We want to establish the implication in the opposite direction.
We consider a solution ðu; aÞ of (5) with initial data ðu0; a0Þ satisfying a0ðxÞ ¼ u2

0ðxÞ þ u2
0;xðxÞ and we want to

prove that u is solution of (2). It will be the case if we can prove that for any time t > 0; aðx; tÞ remains equal to
u2ðx; tÞ þ u2

xðx; tÞ as the Eqs. (5a) and (5b) become then identical to Eq. (2). After differentiating (5a) and using
(5b), we obtain
utx þ u2
x þ uuxx ¼

1

2
u2 þ 1

2
a� P :
We multiply both sides by 2ux and after some manipulations we obtain
ðu2
xÞt þ uðu2

xÞx ¼ u2ux þ aux � 2Pux � 2u3
x : ð21Þ
After multiplying (5a) by 2u, we obtain
ðu2Þt þ uðu2Þx þ 2P xu ¼ 0: ð22Þ

Let us denote the difference a� ðu2 þ u2

xÞ by w. Subtracting (21) and (22) to (5c), we obtain after some calcu-
lations that
wt þ uwx ¼ �2uxw: ð23Þ
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Fig. 5. L1-error of the centered scheme at T ¼ 2 and T ¼ 5 applied to the single-peakon problem with initial data (20) where
x0 ¼ 0; a ¼ 6; c ¼ 1.
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We have wðx; 0Þ ¼ a0ðxÞ � u2
0ðxÞ þ u2

0;xðxÞ ¼ 0. We claim that wðx; tÞ ¼ 0 for all t > 0 and therefore the systems
(2) and (5) are equivalent. Recalling the assumption that u is smooth, we can define the characteristics yðn; tÞ as
ytðn; tÞ ¼ uðyðn; tÞ; tÞ with yðn; 0Þ ¼ n and the mapping n! yðn; tÞ is a bijection for all time t. We consider the
quantity W ðn; tÞ ¼ wðyðn; tÞ; tÞ. Since W t ¼ wtðy; tÞ þ uðy; tÞwxðy; tÞ, it follows from (23) that
W tðn; tÞ ¼ �2uxðy; tÞW ðn; tÞ:

Since we assume that u is smooth, we have C ¼ supðx;tÞ2R�½0;T � j uxðx; tÞ j<1 and
j W t j6 C j W j :

As W ðn; 0Þ ¼ wðn; 0Þ ¼ 0, Gronwall’s Lemma gives us that W ðn; tÞ ¼ 0 for all t and n and therefore wðx; tÞ ¼ 0
for all t and x, as claimed. Of course, the condition that u is smooth is a strong limitation since it does not
cover the collision case, which was the case which motivated the introduction of the system (5). However,
one must keep in mind that the uniqueness of the conservative solutions in [2,24] is only obtained in the
new sets of variables where they are defined and that there is no uniqueness result – to the knowledge of
the authors – for the equation expressed in the original variable u, even if it would be reasonable to conjecture
that the solution of
ut þ uux þ P x ¼ 0;

P � P xx ¼ u2 þ 1

2
u2

x ;

ðu2 þ u2
xÞt þ ðuðu2 þ u2

xÞÞx ¼ ðu3 � 2PuÞx

is unique and given by the conservative solutions. But this is an open problem and from this perspective, the
fact that the numerical solutions of (5) we obtain below coincide with the conservative solutions of the prob-
lem reinforces this conjecture.

Let us introduce a multi-symplectic formulation based on (5).
Let z ¼ ½u; b;w; a;/; c; P ; r�,
M ¼

0 � 1
2

0 0 0 0 0 0
1
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 � 1
2

0 0 0

0 0 0 1
2

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

266666666666664

377777777777775
; K ¼

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 �1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 �1 0 0 0

0 �1 0 0 0 0 0 �2

0 0 0 0 0 0 2 0

266666666666664

377777777777775
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and
S ¼ �cuþ u2a
2
� u4

4
þ Pu2 � aw� P 2 þ r2:
The multi-symplectic formulation (6) is equivalent to the following system
� 1

2
bt ¼ �cþ ua� u3 þ 2Pu;

1

2
ut þ wx þ P x ¼ 0;

� bx ¼ �a; � 1

2
/t ¼ �wþ u2

2
;

1

2
at þ cx ¼ 0; �/x ¼ �u;

� bx � 2rx ¼ �2P þ u2; 2P x ¼ 2r:

ð24Þ
We now find the energy and momentum corresponding to this multi-symplectic formulation. As for the first
formulation, the density functions are given by
EðzÞ ¼ �c/x þ
u2a
2
� u4

4
þ Pu2 � aw� P 2 þ P 2

x þ
1

2
bxðwþ P Þ � 1

2
wxbþ

1

2
/xc�

1

2
cx/�

1

2
P xð2P x þ bÞ

þ P xxP ;

F ðzÞ ¼ � 1

2
btðwþ P Þ þ 1

2
wtb�

1

2
/tcþ

1

2
ct/þ

1

2
P tð2P x þ bÞ � P xtP ;

GðzÞ ¼ �c/x þ
u2a
2
� u4

4
þ Pu2 � aw� P 2 þ P 2

x �
1

4
ðutb� btuþ at/� /taÞ;

IðzÞ ¼ 1

4
ðuxb� bxuþ ax/� /xaÞ:
The first conservation law otEðzÞ þ oxF ðzÞ ¼ 0 yields
d

dt

Z
�c/x þ

1

2
/xc�

1

2
cx/� bxwþ

1

2
bxw�

1

2
wxb�

1

2
P xbþ

u2a
2
� u4

4

�
þPu2 � P 2 þ P 2

x þ
1

2
aP � P 2

x þ P xxP
�

dx

þ 1

2
½wtbþ ct/þ P tb� ¼ 0:
Integrating the terms � 1
2
cx/;� 1

2
wxb and � 1

2
P xb by parts, and using the periodicity (or vanishing at infinity)

of the functions u; P ;w;/t; bt, we obtain that
d

dt

Z
u2 þ u2

x

2

� �
P þ u2

4
ðu2 þ 2u2

xÞ
� �

dx ¼ 0:
The second local conservation law otIðzÞ þ oxGðzÞ ¼ 0 leads to
1

4

d

dt

Z
ðuxb� auþ ax/� auÞdxþ ½GðzÞ� ¼ 0:
And two integrations by parts give the global conservation of
R
ðu3 þ u2

xuÞdx. We thus obtain the following two
global conserved quantities
H2 ¼
Z
ðu3 þ u2

xuÞdx; ð25Þ

H3 ¼
Z

u2 þ u2
x

2

� �
P þ u2

4
ðu2 þ 2u2

xÞ
� �

dx; ð26Þ
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which correspond to the third and fourth Hamiltonian in the series of constant of motion of the Camassa–
Holm equation.

Considering again (24), we see that after eliminating the intermediate variables b;w;/; c and r, the system
(5) is recovered. The computation is identical to the discrete case which is treated below. We use symmetric
splittings of M and K and take Mþ ¼ M� ¼ 1

2
M and Kþ ¼ K� ¼ 1

2
K. The Euler box scheme is then obtained

from (24) by replacing the exact derivatives, ot and ox, by their discrete symmetric counterparts, dt and dx. We
have
� 1

2
dtb

n;i ¼ �cn;i þ un;ian;i � ðun;iÞ3 þ 2P n;iun;i;
1

2
dtun;i þ dxwn;i þ dxP n;i ¼ 0; ð27aÞ

�dxb
n;i ¼ �an;i; � 1

2
dt/

n;i ¼ �wn;i þ ðu
n;iÞ2

2
; ð27bÞ

�dx/
n;i ¼ �un;i;

1

2
dta

n;i þ dxc
n;i ¼ 0; ð27cÞ

�dxb
n;i � 2dxrn;i ¼ �2P n;i þ ðun;iÞ2; 2dxP n;i ¼ 2rn;i: ð27dÞ
As for the first multi-symplectic formulation, we eliminate the intermediate variables. Applying dx to both
sides of the first equation in (27a), we obtain
� 1

2
dxdtb

n;i ¼ �dxc
n;i þ dxðun;ian;i � ðun;iÞ3 þ 2P n;iun;iÞ: ð28Þ
The operators dt and dx commute. Plugging dxb
n;i ¼ an;i and dxcn;i ¼ � 1

2
dtan;i into (28) we obtain
dta
n;i þ dxðun;ian;iÞ ¼ dxððun;iÞ3 � 2P n;iun;iÞ; ð29Þ
which corresponds to the discretised version of (5c). Combining the first equation in (27b) and the two in
(27d), we obtain
P n;i � dxdxP n;i ¼ 1

2
ðun;iÞ2 þ 1

2
an;i; ð30Þ
which corresponds to the discretised version of (5b). After applying dx to the second equation in (27b), we
obtain
dxwn;i ¼ 1

2
dtdx/

n;i þ dx

� ðun;iÞ2

2

�
:

Plugging this into the second equation in (27a), since dx/
n;i ¼ un;i from the first equation in (27c), we finally get
dtun;i þ dx
ðun;iÞ2

2

 !
þ dxP n;i ¼ 0; ð31Þ
which is the discretised version of (5a). Gathering (31), (30) and (29), we obtain the following numerical
scheme
dtun;i þ dx
ðun;iÞ2

2

 !
þ dxP n;i ¼ 0; ð32aÞ

P n;i � dxdxP n;i ¼ 1

2
ðun;iÞ2 þ 1

2
an;i; ð32bÞ

dta
n;i þ dxðun;ian;iÞ ¼ dxððun;iÞ3 � 2P n;iun;iÞ: ð32cÞ
The numerical scheme (32) is the multi-symplectic Euler box scheme derived from the multi-symplectic formu-
lation (6) and therefore it enjoys the conservation law (12). We also note that the scheme can be derived di-
rectly from (5) by taking the symmetric discretisation of the derivatives - both with respect to time and space –
which appear in the system.
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We consider the rate of convergence for the smooth traveling wave (19) using the scheme (32), the Courant
number p ¼ cDt

Dx is fixed to the value p ¼ 0:9. We vary the space step Dx and set the time step to Dt ¼ pDx=c.
Table 2 displays the L1-error and an order estimate at time T ¼ 12. This table can be compared to Table 1.

We next consider the convergence of the scheme (32) for the single-peakon problem with initial data (20)
using x0 ¼ 0; a ¼ 6; and c ¼ 1. Once again, the Courant number p ¼ cDt=Dx is fixed to the value 0.9 and we
vary Dx. A plot of the error at time T ¼ 2 and T ¼ 5 can be found in Fig. 6.

We want to study the behaviour of the numerical scheme when dealing with a collision. First we derive a
reference solution for the antisymmetric peakon collision. We adapt the formulae derived in [25] to the peri-
odic case. Let a denote the period. We consider the antisymmetric case and the positions of the peaks are given
by
Table
Conve

Dx

2.5272
1.2636
6.3179
3.1590
2.1060
1.5795
1.2636
1.0783
8.0869

Fig. 6
x0 ¼ 0;
y2iðtÞ ¼ �yðtÞ þ ia and y2iþ1ðtÞ ¼ yðtÞ þ ia ð33Þ

while their height are given by
u2iðtÞ ¼ �uðtÞ and u2iþ1ðtÞ ¼ uðtÞ ð34Þ

for i ¼ 0;�1;�2; . . .. We denote the energy contained between the ith and iþ 1th peak by dH iðtÞ, that is, when
the peaks do not coincide,
dHiðtÞ ¼
Z yiþ1

yi

ðu2ðx; tÞ þ u2
xðx; tÞÞdx: ð35Þ
In (35), uðx; tÞ denotes the solution of (1) and not the height of the peak given in (34). Between two peaks, the
function uðx; tÞ is given as a linear combination of e�x and ex and therefore the integral in (35) can be com-
puted. We obtain
2
rgence rate for the smooth traveling wave (19) for the scheme (32)

L1-error Order estimate

e�02 2.6017e�03 –
e�02 6.5045e�04 1.9999
e�03 1.6256e�04 2.0004
e�03 4.0644e�05 1.9999
e�03 1.8066e�05 1.9998
e�03 1.0162e�05 2.0001
e�03 6.5036e�06 1.9999
e�03 4.7358e�06 2.0000
e�04 2.6640e�06 1.9998

10–3 10–2

10–4

10–3

Δ

T=2

T=5

. L1-error of the centered scheme at T ¼ 2 and T ¼ 5 applied to the single-peakon problem with initial data (20) using
a ¼ 6; and c ¼ 1. The dashed lines have slopes 1 and 2.
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dH iðtÞ ¼
ðu2

i þ u2
iþ1Þ coshðyiþ1 � yiÞ � 2uiuiþ1

sinhðyiþ1 � yiÞ
:

Note that when there is a collision, yiþ1 ¼ yi, but this is a property of the quantity dHi that it remains well-
defined for all time. Note also that, at collision time, we have dH i > 0 and not dHi ¼ 0 as (35) could indicate.
In [25], the variable dH i is considered as an independent variable and the equations that governs ðyi;Ui; dH iÞ
are given by
d

dt
yi ¼ ui; ð36aÞ

d

dt
ui ¼ �Qi; ð36bÞ

d

dt
dHi ¼ u3

iþ1 � u3
i � 2P iþ1uiþ1 þ 2P iui; ð36cÞ
where
P i ¼
X1

j¼�1
P i;j; and Qi ¼ �

X1
j¼�1

jijP i;j; ð37Þ
with
P i;j ¼
expð�jijyiÞ expðjij

yjþyjþ1

2
Þ

8 coshðyjþ1�yj

2
Þ

2dHjcosh2 yjþ1 � yj

2

� �
þ 2jijðu2

jþ1 � u2
j Þsinh2 yjþ1 � yj

2

� ��
þðujþ1 þ ujÞ2 tanh

yjþ1 � yj

2

� ��
; ð38Þ
and
jij ¼
�1 if j P i

1 otherwise:

�

Due to the periodicity of the solution, dH 2i does not depend on i and we set h ¼ dH 2i. We denote by E the
energy over one period, that is, for times where no collision occurs,
E ¼
Z a

0

ðu2ðx; tÞ þ u2
xðx; tÞÞdx: ð39Þ
The quantity E is conserved and the energy contained between the 2iþ 1th and 2iþ 2th peaks is given by
dH 2iþ1 ¼ E � h. Using (33) and (34) we obtain from (38) and (37), after some calculation, that
Q2i ¼ �Q2iþ1 ¼ �E
coshða

2
� yÞ sinhðyÞ

4 sinhða
2
Þ þ h

4
ð40Þ
and
P i ¼ E
coshða

2
� yÞ coshðyÞ

4 sinhða
2
Þ :
Then, (36) yields
yt ¼ u; ð41aÞ

ut ¼ �E
coshða

2
� yÞ sinhðyÞ

4 sinhða
2
Þ þ h

4
; ð41bÞ

ht ¼ 2 u3 � Eu
coshða

2
� yÞ coshðyÞ

2 sinhða
2
Þ

� �
: ð41cÞ
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For the times when there is no collision, that is, when y is different from 0 or a
2
, it is possible to compute explic-

itly the energy h and E from (39) and (35). We obtain
E ¼ 2u2 sinhða
2
Þ

sinhðyÞ sinhða
2
� yÞ ; ð42Þ
and
h ¼ 2u2 coshðyÞ
sinhðyÞ : ð43Þ
These expressions are not well-defined when y ¼ 0 or y ¼ a
2

but, after plugging (43) into (42), we get
h ¼ E
sinhða

2
� yÞ coshðyÞ
sinhða

2
Þ ; ð44Þ
which is well-defined even when collisions occur. Thus, we obtain an expression for h as a function only of y.
In this simple case of an antisymmetric peakon–antipeakon collision, we did not integrate directly (36c), we
rather used the fact that for almost every time, the density energy is given by u2 þ u2

x dx and therefore (35)
and (39) hold. Of course, it is possible to derive (42) and (44) from the governing equations (41). To do that,
one can introduce the quantities
w1 ¼ E sinh
a
2
� y

� �
coshðyÞ � h sinh

a
2

� �

and
w2 ¼ E sinhðyÞ sinh
a
2
� y

� �
� 2u2 sinh

a
2

� �
:

From (41), after some computations, we obtain that
w01 ¼ uw2;

w02 ¼ uw1:
Hence, if (42) and (44) hold at time 0, that is w1ð0Þ ¼ w2ð0Þ ¼ 0, then, by Gronwall’s Lemma,
w1ðtÞ ¼ w2ðtÞ ¼ 0 for all t, that is, (42) and (44) hold for all time.

Finally, after plugging (44) into (40), Eqs. (36a) and (36b) yield
ytt ¼
E sinhða

2
� 2yÞ

4 sinhða
2
Þ : ð45Þ
We outline here the computation of the trajectory of the peakons. For the sake of simplicity, we set the initial
data to yð0Þ ¼ ytð0Þ ¼ 0, that is, the peakons collide at time t ¼ 0. We multiply (45) by yt and after one inte-
gration get
1

2
y2

t ¼
E

8 sinhða
2
Þ cosh

a
2

� �
� cosh

a
2
� 2y

� �� �
; ð46Þ
where we have used the initial condition ytð0Þ ¼ 0. Making the change of variable z ¼ y � a
4

in (46), we get
z2
t ¼

E
4 sinh a

2

	 
 cosh
a
2

� �
� coshð2zÞ

� �
:

After simplifications, this leads to
ztffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k02cosh2ðzÞÞ

q ¼
E cothða

4
Þ

4

� �1
2

; ð47Þ
where k0 ¼ 1
coshða4Þ

. We set k2 ¼ 1� k02 so that k ¼ tanhða
4
Þ and denote ea ¼ ðE cothða4Þ

4
Þ

1
2. The expression on the left-

hand side of (47) can be integrated with the help of Jacobi elliptic functions with modulus k, see e.g. [5], and we
get
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coshðzÞ ¼ ndðeat þ AÞ; ð48Þ

where A is a constant to be determined by the boundary condition. The constant A turns out to be equal to the
complete integral K, see [5] and the expression (48) simplifies to
sinhðzÞ ¼ � sinh
a
4

� �
cnðeatÞ: ð49Þ
Finally, we obtain
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Fig. 7. Trajectory of one peakon.
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Fig. 8. Plot of the computed solution and the exact solution (in dash line) at time t ¼ 12.
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y ¼ a
4
� sinh�1 sinh

a
4

� �
cnðeatÞ

� �
:

We can compute u ¼ yt, the height of the peak and get
u ¼ ea tanh
a
4

� �
snðeatÞ:
In Fig. 7, we plot the trajectory of one peakon, that is, ðyðtÞ; uðtÞÞ.
From the position of the peaks (given by y) and their height (given by u), we reconstruct the solution uðx; tÞ

between the peaks as a linear combination of ex and e�x. The solution obtained this way will be considered as
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. Plot of the energy density, ðu2 þ u2
xÞðx; tÞ, for the exact solution at different times before collision (tc � 5:69 is the collision time).
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ig. 9. Snapshots showing the collapse and resurrection of an antisymmetric peakon collision, Dx ¼ 0:0133 and Dt ¼ 0:0024.
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Fig. 11. Conservation of momentum (25) and energy (26) for the second multi-symplectic formulation, Dx ¼ 0:0133 and Dt ¼ 0:0024.
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the reference solution. In the following numerical test, the initial values are set to yð0Þ ¼ a=4 and ytð0Þ ¼
uð0Þ ¼ �1. From (42), we have E ¼ 4tanh�1ða

4
Þ.

We apply the multi-symplectic scheme (32) to the antisymmetric peakon collision with initial data from
Fig. 1. The problem is integrated on the time interval [0, 12] and the spatial domain is [0, 20]. In Fig. 8, we
can see that the scheme converges and that the main part of the error is concentrated around the point of col-
lision, x ¼ 10.

Fig. 9 shows the simulation in 4 snapshots taken just before and after that the collision takes place and we
observe strong oscillations.

The difficulty to handle collisions can be explained by the low degree of regularity that the solution reaches
when two peakons collide. Indeed, when the time t tends to the collision time, the energy density ðu2 þ u2

xÞðx; tÞ
tends towards a Dirac, E

P
kda

2þkaðxÞ or E
P

kdkaðxÞ, see Fig. 10. Hence, the variable a, which stands for the
energy density, has very low regularity as it becomes a Dirac function at collision time.

Finally, we plot the deviation of the momentum (25) and the energy (26) from their initial values, along the
numerical solution of method (32). Note that in the evaluation of these integrals, we compute u2

x by means of a
rather than using a finite difference approximation. Good conservation properties are observed for this
scheme, even through the collision point (see Fig. 11).
4. Conclusion

With this paper, we have tried to see if the multi-symplectic philosophy could be useful for the Camassa–
Holm equation. We have presented two new multi-symplectic formulations for this nonlinear partial differen-
tial equation. Basic linearly implicit multi-symplectic schemes were also derived, one allowing to describe pea-
kon–antipeakon collisions.

So far, numerical tests have been conducted only with the Euler box scheme. It remains to try out and ana-
lyze implicit schemes like the Preissman box scheme or some multi-symplectic Runge-Kutta collocation meth-
ods. It would also be interesting to understand whether this formalism can be combined with the techniques
found in the literature for approximating non-smooth solution, i.e., if multi-symplectic variants of such
schemes can be found.

Since the multi-symplectic formulation of a partial differential equation is not unique, one can also try to
find other such formulations of the Camassa–Holm equation and then derive other numerical schemes. Ques-
tions that immediately arise, are whether other multi-symplectic formulations will give different energy and
momentum or not and if these quantities will be the next constants of motion in the series of Hamiltonian
functions of the Camassa–Holm equation.

For all these reasons, it seems to us that it would be of interest to get more insight into the behaviour of
multi-symplectic schemes for the Camassa–Holm equation.
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